On Numerical Algorithms for the Solution of a Beltrami Equation
نویسندگان
چکیده
منابع مشابه
On Numerical Algorithms for the Solution of a Beltrami Equation
Abstract. The paper concerns numerical algorithms for solving the Beltrami equation fz̄(z) = μ(z)fz(z) for a compactly supported μ. First, we study an efficient algorithm that has been proposed in the literature, and present its rigorous justification. We then propose a different scheme for solving the Beltrami equation which has a comparable speed and accuracy, but has the virtue of a greater s...
متن کاملNumerical Solution of the Beltrami Equation
Abstract. An effective algorithm is presented for solving the Beltrami equation ∂f = μ ∂f in a planar disk. The algorithm involves no evaluation of singular integrals. The strategy, working in concentric rings, is to construct a piecewise linear μ-conformal mapping and then correct the image using a known algorithm for conformal mappings. Numerical examples are provided and the computational co...
متن کاملNumerical solution of the R-linear Beltrami equation
The R-linear Beltrami equation appears in applications, such as in the inverse problem of recovering the electrical conductivity distribution in the plane. In this paper, a new way to discretize the R-linear Beltrami equation is considered. This gives rise to large and dense R-linear systems of equations with structure. For their iterative solution, norm minimizing Krylov subspace methods are d...
متن کاملNumerical solution for one-dimensional independent of time Schrödinger Equation
In this paper, one of the numerical solution method of one- particle, one dimensional timeindependentSchrodinger equation are presented that allows one to obtain accurate bound state eigenvalues and functions for an arbitrary potential energy function V(x).For each case, we draw eigen functions versus the related reduced variable for the correspondingenergies. The paper ended with a comparison ...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Numerical Analysis
سال: 2008
ISSN: 0036-1429,1095-7170
DOI: 10.1137/050640710